9 research outputs found

    Robust Fault Diagnosis by Optimal Input Design for Self-sensing Systems

    Full text link
    This paper presents a methodology for model based robust fault diagnosis and a methodology for input design to obtain optimal diagnosis of faults. The proposed algorithm is suitable for real time implementation. Issues of robustness are addressed for the input design and fault diagnosis methodologies. The proposed technique allows robust fault diagnosis under suitable conditions on the system uncertainty. The designed input and fault diagnosis techniques are illustrated by numerical simulation.Comment: Accepted in IFAC World Congress 201

    On the Simulation of Polynomial NARMAX Models

    Get PDF
    In this paper, we show that the common approach for simulation non-linear stochastic models, commonly used in system identification, via setting the noise contributions to zero results in a biased response. We also demonstrate that to achieve unbiased simulation of finite order NARMAX models, in general, we require infinite order simulation models. The main contributions of the paper are two-fold. Firstly, an alternate representation of polynomial NARMAX models, based on Hermite polynomials, is proposed. The proposed representation provides a convenient way to translate a polynomial NARMAX model to a corresponding simulation model by simply setting certain terms to zero. This translation is exact when the simulation model can be written as an NFIR model. Secondly, a parameterized approximation method is proposed to curtail infinite order simulation models to a finite order. The proposed approximation can be viewed as a trade-off between the conventional approach of setting noise contributions to zero and the approach of incorporating the bias introduced by higher-order moments of the noise distribution. Simulation studies are provided to illustrate the utility of the proposed representation and approximation method.Comment: Accepted in IEEE CDC 201

    Supplementary Material:On Automated Multi-objective Identification Using Grammar-based Genetic Programming

    Get PDF
    This document contains the supplementary material for the contribution "On Automated Multi-objective Identification Using Grammar-based Genetic Programming"

    Automating data-driven modelling of dynamical systems:an evolutionary computation approach

    No full text
    This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user鈥檚 perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification

    A Tree Adjoining Grammar representation for models of stochastic dynamical systems

    Get PDF
    Model structure and complexity selection remains a challenging problem in system identification, especially for parametric non-linear models. Many Evolutionary Algorithm (EA) based methods have been proposed in the literature for estimating model structure and complexity. In most cases, the proposed methods are devised for estimating structure and complexity within a specified model class and hence these methods do not extend to other model structures without significant changes. In this paper, we propose a Tree Adjoining Grammar (TAG) for stochastic parametric models. TAGs can be used to generate models in an EA framework while imposing desirable structural constraints and incorporating prior knowledge. In this paper, we propose a TAG that can systematically generate models ranging from FIRs to polynomial NARMAX models. Furthermore, we demonstrate that TAGs can be easily extended to more general model classes, such as the non-linear Box鈥揓enkins model class, enabling the realization of flexible and automatic model structure and complexity selection via EA

    Data-driven modelling of dynamical systems using tree adjoining grammar and genetic programming

    No full text
    State-of-the-art methods for data-driven modelling of non-linear dynamical systems typically involve interactions with an expert user. In order to partially automate the process of modelling physical systems from data, many EA-based approaches have been proposed for model-structure selection, with special focus on non-linear systems. Recently, an approach for data-driven modelling of non-linear dynamical systems using Genetic Programming (GP) was proposed. The novelty of the method was the modelling of noise and the use of Tree Adjoining Grammar to shape the search-space explored by GP. In this paper, we report results achieved by the proposed method on three case studies. Each of the case studies considered here is based on real physical systems. The case studies pose a variety of challenges. In particular, these challenges range over varying amounts of prior knowledge of the true system, amount of data available, the complexity of the dynamics of the system, and the nature of non-linearities in the system. Based on the results achieved for the case studies, we critically analyse the performance of the proposed method

    Clinical Characterization and Genomic Analysis of Samples from COVID-19 Breakthrough Infections during the Second Wave among the Various States of India

    No full text
    From March to June 2021, India experienced a deadly second wave of COVID-19, with an increased number of post-vaccination breakthrough infections reported across the country. To understand the possible reason for these breakthroughs, we collected 677 clinical samples (throat swab/nasal swabs) of individuals from 17 states/Union Territories of the country who had received two doses (n = 592) and one dose (n = 85) of vaccines and tested positive for COVID-19. These cases were telephonically interviewed and clinical data were analyzed. A total of 511 SARS-CoV-2 genomes were recovered with genome coverage of higher than 98% from both groups. Analysis of both groups determined that 86.69% (n = 443) of them belonged to the Delta variant, along with Alpha, Kappa, Delta AY.1, and Delta AY.2. The Delta variant clustered into four distinct sub-lineages. Sub-lineage I had mutations in ORF1ab A1306S, P2046L, P2287S, V2930L, T3255I, T3446A, G5063S, P5401L, and A6319V, and in N G215C; Sub-lineage II had mutations in ORF1ab P309L, A3209V, V3718A, G5063S, P5401L, and ORF7a L116F; Sub-lineage III had mutations in ORF1ab A3209V, V3718A, T3750I, G5063S, and P5401L and in spike A222V; Sub-lineage IV had mutations in ORF1ab P309L, D2980N, and F3138S and spike K77T. This study indicates that majority of the breakthrough COVID-19 clinical cases were infected with the Delta variant, and only 9.8% cases required hospitalization, while fatality was observed in only 0.4% cases. This clearly suggests that the vaccination does provide reduction in hospital admission and mortality
    corecore